| Ders Adı | Kodu | Verildiği Yıl | Verildiği Yarıyıl | Süresi (T+U) | Yerel Kredisi | AKTS Kredisi |
| Dinamik Sistemler ve Kaos | MATH 402 | | | 3 + 0 | 3 | 5,00 |
| |
| Ders Bilgileri |
| Dersin Öğretim Dili | İngilizce |
| Dersin Seviyesi | Lisans |
| Dersin Türü | Seçmeli |
| Dersin Veriliş Biçimi | Yüz Yüze |
| |
Dersin Öğrenme Kazanımları:
Bu dersi başarı ile tamamlayan öğrenciler: |
| 1. Sabit noktaları, periyodik noktaları, yutakları ve kaynakları öğrenir |
| 2. Başlangıç koşullarına Kararlılık ve Hassas bağımlılığı öğrenir |
| 3. Deterministik sistemlerin kaotik ve dolayısıyla öngörülemez olabileceğini öğrenir |
| |
| Dersin Önkoşulları ve Birlikte Alınması Gereken Dersler | Yok |
| Daha Önce Alınmış Olması Önerilen Dersler | Yok |
| |
Dersin Tanımı:
Tek boyutlu haritalar. Sabit noktalar ve kararlılık. Periyodik noktalar. Başlangıç koşullarına hassas bağımlılık. Kaos. Lyapunov üsleri. Kaotik yörüngeler. Fraktallar. Cantor seti. Deterministik sistemler. Fraktal boyutlar.
|
| |
Üretken Yapay Zeka Kullanımı:
|
| |
| Dersin İçeriği (Haftalık Konu Dağılımı): |
| |
| Hafta | Konu |
| 1 | Tek Boyutlu Haritalar |
| 2 | Kararlılık, Periyodik Noktalar |
| 3 | Lojistik Haritalar |
| 4 | İki Boyutlu Haritalar |
| 5 | Doğrusal Haritalar |
| 6 | Doğrusal Olmayan Haritalar, Kararlı ve Kararsız Manifoldlar |
| 7 | Kaos |
| 8 | Çeekim Havzaları |
| 9 | Fraktallar |
| 10 | Havza Sınırları |
| 11 | Fraktal boyut |
| 12 | İki Boyutlu Haritalarda Kaos |
| 13 | Lyapunov Boyut |
| 14 | At Nalı Haritası |
| |
| Kaynaklar: |
| Chaos -An Introduction to Dynamical Systems; K.T. Alligood, T.D. Sauer, J.A. Yorke; Springer Verlag;1996; 978-0387946771 |
| |
| Diğer Kaynaklar: |
| Chaos and nonlinear dynamics : an introduction for scientists and engineers.; Hilborn, Robert C.; Oxford University Press; 2000; 0-19-850723-2 |
| |
| Öğretim Yöntem ve Teknikleri: |
| Haftada 3 saat ders. Derslere katılım zorunludur. Öğrencilerin (dersi yükseltmek için alanlar ve FF/FD notuyla başarısız olanlar hariç) final sınavına girmek için toplam derslerin en az %60'ına katılmaları beklenir. Aksi takdirde öğrenci NA notuyla başarısız olur. |
| |
| Değerlendirme Sistemi: |
| Yöntem | Adet | Katkı (%) |
| Ara Sınav | 2 | %50 |
| Final Sınavı | 1 | %50 |
| |
| Ders İşbaşı Eğitimi (iş yerinde eğitim) Gerektiriyor mu? |
| Gerektirmiyor |
| |
Dersin AKTS İş Yükü:
|
| # | Aktivite | Adet | Süre (Saat) | İş Yükü |
| 1 | Derslere Katılım (haftalık bazda) | 14 | 3,00 | 42,00 |
| 2 | Laboratuvarlara/Derslere Katılım (haftalık bazda) | 0 | 0,00 | 0,00 |
| 3 | Notların önceden hazırlanması ve son haline getirilmesi (haftalık bazda) | 14 | 1,00 | 14,00 |
| 4 | İlgili materyalin toplanması ve seçilmesi (bir kez) | 1 | 5,00 | 5,00 |
| 5 | İlgili materyalin kendi kendine incelenmesi (haftalık bazda) | 14 | 1,00 | 14,00 |
| 6 | Ev ödevleri | 0 | 0,00 | 0,00 |
| 7 | Sınavlara Hazırlık | 0 | 0,00 | 0,00 |
| 8 | Ara Sınavlara Hazırlık (Sınavların süresi dahil) | 2 | 15,00 | 30,00 |
| 9 | Dönem Ödevi/Vaka Çalışması Raporunun Hazırlanması (sözlü sunum dahil) | 0 | 0,00 | 0,00 |
| 10 | Dönem Projesi/Saha Çalışması Raporunun Hazırlanması (sözlü sunum dahil) | 0 | 0,00 | 0,00 |
| 11 | Final Sınavına Hazırlık (sınav süresi dahil) | 1 | 20,00 | 20,00 |
| |
Dersin Program Yeterlilikleri vs. Öğrenme Kazanımları:
|
| # | Program Yeterlilikleri | Katkı (0-4) |
| 1 | Matematikte yeterli bilgi birikimine ve bu alanlardaki teorik ve uygulamalı bilgiyi, soyut ve uygulamalı matematik problemlerini çözmede kullanabilme becerisine sahip olur. | 3 |
| 2 | Modern hesaplama araçlarını, bir soyut veya gerçek hayat problemini analiz etmede kullanabilme becerisine sahip olur. | 3 |
| 3 | Matematikte teorik ve tarihi arka planı hakkında yeterli bilgiye sahip olur. | 3 |
| 4 | Bireysel ve takım halinde verimli çalışabilme, iç disiplinli ve çok disiplinli alanlardaki karmaşık sistemleri analiz etmek için takım halinde verimli işbirliği oluşturma yeteneğine sahip olur. | 3 |
| 5 | Teknik konularda sözlü ve yazılı olarak İngilizce etkin iletişim kurma becerisine sahip olur. | 3 |
| 6 | Bilim, mühendislik ve finans problemlerini çözmek için yeni deneyler ve algoritmalar kullanma, geliştirme ve uygulama becerisine sahip olur. | 3 |
| 7 | Bir matematik problemini, analitik ve nümerik yöntemler kullanarak analiz etme yeteneğine ve daha derin fikirler elde etmek için teorik ve simülasyonel yöntemleri kullanabilme ve karşılaştırabilme becerisine sahip olur. | 3 |
| 8 | Soyut ve uygulamalı matematik alanındaki bir projedeki bulgu, sonuç ve değerleri rapor edebilme, teknik rapor yazabilme, etkili sunumlar hazırlama ve yapma yeteneğine sahip olur. | 3 |
| 9 | Yaşam boyu öğrenmenin gerekliliğini tanıma; bilgiye ulaşma, bilim ve teknolojideki gelişmeleri takip etme ve sürekli gelişmeyi devam ettirebilme yeteneğine sahip olur. | 3 |
| 10 | Mesleki ve etik sorumluluk ve bunların hukuksal sonuçları konusunda farkındalık kazanır. | 4 |