PROGRAMI
DERS TANITIM VE UYGULAMA BİLGİLERİ

Ders AdıKoduVerildiği YılVerildiği YarıyılSüresi (T+U)Yerel KredisiAKTS Kredisi
Makine Öğrenme MatematiğiEE 5423 + 037,50
 
Ders Bilgileri
Dersin Öğretim Diliİngilizce
Dersin SeviyesiYüksek Lisans
Dersin Türü
Dersin Veriliş BiçimiYüz Yüze
 
Dersin Öğrenme Kazanımları:

Bu dersi başarı ile tamamlayan öğrenciler:
1. Makine öğreniminin matematiğini anlamak
2. Makine öğrenme sistemlerinde optimizasyon tekniğini anlamak
 
Dersin Önkoşulları ve Birlikte Alınması Gereken DerslerYok
Daha Önce Alınmış Olması Önerilen DerslerYok
 
Dersin Tanımı:

Ders, bilgisayarlı görme temellerine genel bir bakışla başlayıp görüntü sınıflandırma yaklaşımları, sinir ağları ve evrişimli sinir ağları (CNN), yinelemeli sinir ağları ve üretken ağlarla devam ederek çeşitli ilişkili kavramları kapsayacaktır. Ders, esas olarak bilgisayarlı görme amaçları için eğitilmiş derin CNN'lerin nasıl tasarlanıp görselleştirileceğini anlamaya odaklanacaktır.
 
Üretken Yapay Zeka Kullanımı:

 
Dersin İçeriği (Haftalık Konu Dağılımı):
 
HaftaKonu
1Doğrusal cebir, baz, vektör uzayları ve doğrusal bağımsızlık konularına genel bakış
2Özdeğer teoremi, İlke Bileşenler,
3Çok Değişkenli Hesaplama, Kısmi Türevleme, Jacobian ve Hessian Matrisleri,
4Çok Değişkenli Zincir Kuralı, Basit Yapay Sinir Ağları
5Çok Değişkenli Zincir Kuralı, Basit Yapay Sinir Ağları
6Optimizasyon, dışbükeylik, maliyet fonksiyonları,
7Gradyan iniş, en dik iniş, momentum
8Kısıtlı optimizasyon
9Farklı Optimizasyon Senaryoları
10Regresyon, doğrusal ve doğrusal olmayan
11Çok Katmanlı Sinir Ağları ve Geri Yayılım Eğitimi
12Derin Öğrenmede Hiper Parametre Ayarlaması, Toplu Normalizasyon
13Derin Ağlarda Nöron Çıkış Maksimizasyonu
14Proje Haftası, her grup için 15 dakikalık proje sunumları ve tartışmaları.
 
Kaynaklar:
 
 
Diğer Kaynaklar:
Gilbert Strang Introduction to Linear Algebra, Fourth Edition Wellesley Cambridge Press 2009 978-0980232714 Jan A Snyman; Daniel N Wilke Practical Mathematical Optimization Springer 2018 978-3319775869
 
Öğretim Yöntem ve Teknikleri:
• Haftada 3 saat ders anlatımı • Sınıfta gösterilecek grup projeleri
 
Değerlendirme Sistemi:
YöntemAdetKatkı (%)
Ödev1%10
Ara Sınav1%20
Proje1%40
Final Sınavı1%30
 
Ders İşbaşı Eğitimi (iş yerinde eğitim) Gerektiriyor mu?
Gerektirmiyor
 
Dersin Program Yeterlilikleri vs. Öğrenme Kazanımları:
#Program YeterlilikleriKatkı
1Elektrik ve Elektronik Mühendisliği ile ilgili matematik, fen bilimleri ve mühendislik konularında yeterli bilgi; bu alanlardaki kuramsal ve uygulamalı bilgileri karmaşık mühendislik problemlerine tatbik edebilme becerisi.4
2Karmaşık Elektrik ve Elektronik Mühendisliği problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla, uygun analiz ve modelleme metodlaarını seçme ve uygulama becerilerini geliştirme.2
3Karmaşık bir sistemi, süreci, cihazı veya ürünü, belirli şartları sağlayan gerçekçi kısıtlar ve koşullar altında, tasarlayabilme becerisi; bu amaçla modern tasarım metodlarını uygulamak için beceri geliştirme.2
4Elektrik ve Elektronik Mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli modern teknikleri ve araçları tasarlama, seçme ve kullanma becerisi; bilgi teknolojilerini etkin bir biçimde kullanma becerisi.3
5Elektrik ve Elektronik Mühendisliği ile ilgil karmaşık problemlerin veya araştırma alanlarının incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi.4
6Disiplin içi ve çok disiplinli takımlarda etkin bir şekilde işbirliği yaparak verimli çalışabilme becerisi; bireysel çalışma becerisi.3
7Türkçe’de sözlü ve yazılı etki iletişim becerisi; en az bir yabancı lisan [özellikle İngilce) bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.1
8Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme becerisi, bilim ve teknolojideki en son gelişmeleri takip edebilme becerisi, sürekli güncel kalabilme becerisi.1
9Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk bilinci; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi.0
10Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi.0
11Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık.0