| Ders Adı | Kodu | Verildiği Yıl | Verildiği Yarıyıl | Süresi (T+U) | Yerel Kredisi | AKTS Kredisi |
| Doğrusal Olmayan Dinamik Sistemler | MATH 513 | | 1 | 3 + 0 | 3 | 7,50 |
| |
| Ders Bilgileri |
| Dersin Öğretim Dili | İngilizce |
| Dersin Seviyesi | Yüksek Lisans |
| Dersin Türü | Seçmeli |
| Dersin Veriliş Biçimi | Yüz Yüze |
| |
Dersin Öğrenme Kazanımları:
Bu dersi başarı ile tamamlayan öğrenciler: |
| 1. Öğrenciler, denge çözümlerini, Lyapunov fonksiyonlarını, periyodik çözümleri, Poincare gönderimlerini, merkez manifoldları, normal formları ve dallanmalarına ilişkin kavramları öğrenecekler ve bunları gerçek hayat problemlerine uygulayacaklar. |
| |
| Dersin Önkoşulları ve Birlikte Alınması Gereken Dersler | Yok |
| Daha Önce Alınmış Olması Önerilen Dersler | Yok |
| |
Dersin Tanımı:
Denge çözümleri, Lyapunov Fonksiyonları, Periyodik Çözümler, Poincare haritalar, merkez manifoldlar, normal formlar, bifurkasyon. |
| |
Üretken Yapay Zeka Kullanımı:
- |
| |
| Dersin İçeriği (Haftalık Konu Dağılımı): |
| |
| Hafta | Konu |
| 1 | Sabit noktaların kararlılığı ve periyodik noktalar |
| 2 | Başlangıç değerlerine hassas bağlılık |
| 3 | İki boyutlu gönderimler |
| 4 | Kararlı ve kararsız manifoldlar |
| 5 | Kaos |
| 6 | Çekim havzası |
| 7 | Cantor kümesi |
| 8 | Fraktal boyut |
| 9 | Lyapunov kuvvetleri |
| 10 | Lyapunoc boyutu |
| 11 | Kaotik çekiciler |
| 12 | Diferensiyel Denklemler |
| 13 | Periyodik yörüngeler ve limit kümeleri |
| 14 | Diferensiyel denklemlerde kaos |
| |
| Kaynaklar: |
| Chaos: An Introduction to Dynamical Systems, K. T. Alligood, T.D. Sauer, J.A. Yorke, Springer, 2000, ISBN: 0-387-94677-2 |
| |
| Diğer Kaynaklar: |
| Nonlinear Dynamics and Chaos, S. H. Strogatz, Westview, 2001, ISBN: 0738204536 |
| |
| Öğretim Yöntem ve Teknikleri: |
| Haftalık 3 saat sınıf dersi. Öğrencilerin derse katılımı zorunludur. Öğrencilerin final sınavına girebilmek için toplam derslerin en az %50'sine devam etmeleri beklenir. Aksi halde öğrenciler NA notu ile kalacaktır. |
| |
| Değerlendirme Sistemi: |
| Yöntem | Adet | Katkı (%) |
| Ödev | 5 | %30 |
| Ara Sınav | 2 | %40 |
| Aktiviteler | 1 | %30 |
| |
| Ders İşbaşı Eğitimi (iş yerinde eğitim) Gerektiriyor mu? |
| Gerektirmiyor |
| |
Dersin AKTS İş Yükü:
|
| # | Aktivite | Adet | Süre (Saat) | İş Yükü |
| 1 | Derslere Katılım (haftalık bazda) | 14 | 3,00 | 42,00 |
| 2 | Laboratuvarlara/Derslere Katılım (haftalık bazda) | 0 | 0,00 | 0,00 |
| 3 | Notların önceden hazırlanması ve son haline getirilmesi (haftalık bazda) | 14 | 1,00 | 14,00 |
| 4 | İlgili materyalin toplanması ve seçilmesi (bir kez) | 1 | 16,00 | 16,00 |
| 5 | İlgili materyalin kendi kendine incelenmesi (haftalık bazda) | 14 | 2,00 | 28,00 |
| 6 | Ev ödevleri | 5 | 3,50 | 17,50 |
| 7 | Sınavlara Hazırlık | 0 | 0,00 | 0,00 |
| 8 | Ara Sınavlara Hazırlık (Sınavların süresi dahil) | 2 | 20,00 | 40,00 |
| 9 | Dönem Ödevi/Vaka Çalışması Raporunun Hazırlanması (sözlü sunum dahil) | 0 | 0,00 | 0,00 |
| 10 | Dönem Projesi/Saha Çalışması Raporunun Hazırlanması (sözlü sunum dahil) | 0 | 0,00 | 0,00 |
| 11 | Final Sınavına Hazırlık (sınav süresi dahil) | 1 | 30,00 | 30,00 |
| |
Dersin Program Yeterlilikleri vs. Öğrenme Kazanımları:
|
| # | Program Yeterlilikleri | Katkı (0-4) |
| 1 | Matematikte yeterli bilgi; Saf ve uygulamalı matematik problemlerini çözmek için bu alanlarda uygulamalı ve teorik bilgileri kullanma becerisi | 4 |
| 2 | Soyut veya gerçek hayat problemini analiz etmek için modern hesaplama araçlarını kullanma becerisi. | 3 |
| 3 | Matematikte kuramsal ve tarihsel arka planda yeterli bilgi birikimi. | 1 |
| 4 | Bireysel ve ekip olarak etkin bir şekilde çalışabilme, karmaşık disiplinler arası ve çok disiplinli alanlardaki karmaşık sistemleri analiz etmek için takımlarda etkili bir şekilde çalışabilme becerisi. | 3 |
| 5 | Hem sözlü hem de yazılı olarak teknik konularda İngilizce etkin bir şekilde iletişim kurabilme. | 3 |
| 6 | Bilimsel, mühendislik ve finansal problemleri çözmek için yeni deney ve algoritma kullanma, geliştirme ve uygulama becerisi. | 3 |
| 7 | Matematiksel bir problemi hem analitik hem de sayısal yöntemler kullanarak analiz edebilme becerisi; Daha derin bir kavrayış kazanmak için teorik ve simülasyon yöntemlerini kullanır ve karşılaştırır. | 2 |
| 8 | Bir projeyle ilgili bulguların, sonuçların ve yorumların saf ve uygulamalı matematik alanında raporlanması, teknik rapor yazma, etkin sunum hazırlama ve yürütme becerisi. | 2 |
| 9 | Hayat boyu öğrenme ihtiyacının tanınması; Bilgiye ulaşma, bilim ve teknolojideki gelişmeleri takip etme ve sürekli kendini geliştirmeyi sağlama becerisi | 3 |
| 10 | Mesleki ve etik sorumluluk konularında farkındalık ve yasal sonuçları. | 4 |
| 11 | Verilen bir problem üzerine literatür taraması yapabilme, buna uygun teknik rapor yazabilme ve sonuçları sunabilme. | 4 |
| 12 | Disiplinlerarası projelerde ulusal veya uluslararası araştırma gruplarında verimli çalışabilme becerisi. Çıktıları tanınmış dergilerde ulusal ve uluslararası düzeyde yayınlayabilme. | 4 |